
BeBat/Verify
Release latest

Ben Batschelet

Aug 18, 2023

CONTENTS

1 Getting Started 3
1.1 Installation . 3
1.2 Basic Usage . 3

2 Conjunctions 5
2.1 Descriptions . 5
2.2 Custom Conjunctions . 6

3 Assertions 7
3.1 Value Assertions . 7
3.2 File Assertions . 16

4 Assertion Modifiers 21
4.1 Included Modifiers . 21
4.2 Chaining Modifiers . 25

5 Chaining 27

6 Property Assertions 29

7 Method Assertions 31
7.1 Return Values . 31
7.2 Exceptions . 31
7.3 Invokable Objects . 32

8 Extending 33
8.1 Custom Constraint . 33
8.2 Custom Verifier . 33

9 Verifier API 35
9.1 Fluent Design . 37

PHP Namespace Index 39

Index 41

i

ii

BeBat/Verify, Release latest

BeBat/Verify is a small wrapper for PHPUnit’s assertions, intended to make your assertion code cleaner, easier to
understand, and simpler to maintain. Here you will find all the information needed to dive into BeBat/Verify and start
using it in your testing journey.

CONTENTS 1

BeBat/Verify, Release latest

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

1.1 Installation

To install the current version of BeBat/Verify from Packagist, run the following in your project directory:

composer require --dev bebat/verify

BeBat/Verify will be added to your composer.json under require-dev and installed in your vendor directory.

1.1.1 Compatibility

BeBat/Verify is built on top of PHPUnit’s own assertions. It is compatible with any version of PHPUnit 8, 9, or 10.1
and above. It should also be compatible with the current version of Codeception.

Some assertions have been removed from later versions of PHPUnit, and others added. When using BeBat/Verify
you should explicitly declare what major version of PHPUnit your project depends on so that there are no surprise
compatibility issues. See the available assertions to see what assertions are compatible with your version of PHPUnit.

In addition, BeBat/Verify is compatible with both PHP 7.2+ and 8+.

1.2 Basic Usage

BeBat/Verify uses namespaced functions, so to include it in your unit tests you should add a use function statement
to the top of your test files:

// assertions for values in code
use function BeBat\Verify\verify;

// assertions for files
use function BeBat\Verify\verify_file;

To use BeBat/Verify in your tests, pass the subject to verify(), followed by a conjunction, and then your assertion(s).
For example:

$testValue = true;

verify($testValue)->is()->true();

That’s it! You’ve now asserted that $testValue is true!

3

https://packagist.org/packages/bebat/verify
https://codeception.com/

BeBat/Verify, Release latest

1.2.1 Alternate Functions

To better match TDD/BDD style, you may wish to give BeBat/Verify’s functions a different name like expect(). This
can be done through the use of function aliases like so:

use function BeBat\Verify\verify as expect;
use function BeBat\Verify\verify_file as expect_file;

Now, in your unit test code, you can write:

expect($testValue)->will()->be()->equalTo('some other value');

4 Chapter 1. Getting Started

CHAPTER

TWO

CONJUNCTIONS

Conjunctions are used tie your subject to your assertions. They control whether the assertion is “positive” (ie, assert
that subject is a certain value) or “negative” (subject is not a certain value). There are also “neutral” conjunctions that
do not change whether the assertion is positive or negative; they can be used to make your tests more readable. The
default set of conjunctions are:

Positive

• is()

• will()

• does()

• has()

Negative

• isNot()

• willNot()

• doesNot()

Neutral

• and()

• be()

• have()

2.1 Descriptions

Conjunctions also allow you to pass a description of your assertion to BeBat/Verify. If your assertion fails, PHPUnit
will use this description as the failure message. For example:

verify($myObject->isValid())->will('pass validation')->be()->true();

If this assertion fails, you will see Value will pass validation in PHPUnit’s output. BeBat/Verify uses a generic
term by default (Value), as well as the conjunction to create the full description. If you would like to use a more
descriptive name for your subject you can pass that to verify() as well. For example:

verify($gpa, 'Student GPA')->isNot('failing')->lessThan(2.0);

The description in this case would be Student GPA is not failing.

5

BeBat/Verify, Release latest

2.2 Custom Conjunctions

Conjunctions are configured through a set of static arrays of strings in BeBat\Verify\API\Base. This allows you
to further customize the description messages, as well as tailor the conjunctions to your own writing style. You can
manipulate these value like you would any other array. For example:

BeBat\Verify\API\Base::$positiveConjunctions[] = 'to';
BeBat\Verify\API\Base::$positiveConjunctions[] = 'should';

BeBat\Verify\API\Base::$negativeConjunctions[] = 'shouldNot';

BeBat\Verify\API\Base::$neutralConjunctions[] = 'also';
BeBat\Verify\API\Base::$neutralConjunctions[] = 'or';

This should be performed somewhere in your test suite’s bootstrap code so that it is done before any assertions are
called and is shared across your tests.

6 Chapter 2. Conjunctions

CHAPTER

THREE

ASSERTIONS

This page lists all of the assertions built in to BeBat/Verify.

Important: All of the examples on this page use positive conjunctions. If you want to verify the inverse of any of
these assertions you should use a negative conjunction instead.

3.1 Value Assertions

To make assertions about the value of some entity you should pass it to verify() and then chain your assertion(s)
after a conjunction.

3.1.1 Equality

identicalTo()

Listing 1: Assert that subject has the same type and value as some other
entity

verify($subject)->is()->identicalTo('some value');

equalTo()

7

BeBat/Verify, Release latest

Listing 2: Assert that subject has the same value as some other entity

verify($subject)->is()->equalTo('some value');

Note: The behavior of equalTo() can be changed using the within(), withoutOrder(), withoutCase(), and
withoutLinEndings() modifiers.

equalToFile()

Listing 3: Assert that subject has the same value as the contents of a file

verify($subject)->is()->equalToFile('/path/to/file.txt');

Note: The behavior of equalToFile() can be changed using the withoutCase() and withoutLineEndings()
modifiers.

3.1.2 Truthiness

true()

Listing 4: Assert that subject is true

verify($subject)->is()->true();

false()

Listing 5: Assert that subject is false

verify($subject)->is()->false();

null()

8 Chapter 3. Assertions

BeBat/Verify, Release latest

Listing 6: Assert that subject is null

verify($subject)->is()->null();

empty()

Listing 7: Assert that subject is empty

verify($subject)->is()->empty();

passCallback()

Listing 8: Assert that subject will pass a callback function

verify($subject)->will()->passCallback(function ($value): bool {
return isPrime($value);

});

3.1.3 Type

instanceOf()

Listing 9: Assert that subject is an instance of some class

verify($subject)->is()->instanceOf(MyClass::class);

array()

Listing 10: Assert that subject is an array

verify($subject)->is()->array();

bool()

3.1. Value Assertions 9

BeBat/Verify, Release latest

Listing 11: Assert that subject is a boolean

verify($subject)->is()->bool();

callable()

Listing 12: Assert that subject is callable

verify($subject)->is()->callable();

closed()

Listing 13: Assert that subject is a closed resource

verify($subject)->is()->closed();

Attention: The closed() assertion requires PHPUnit 9 or later.

float()

Listing 14: Assert that subject is a floating point number

verify($subject)->is()->float();

int()

Listing 15: Assert that subject is an integer number

verify($subject)->is()->int();

iterable()

10 Chapter 3. Assertions

BeBat/Verify, Release latest

Listing 16: Assert that subject is an iterable type

verify($subject)->is()->iterable();

numeric()

Listing 17: Assert that subject is a numeric type

verify($subject)->is()->numeric();

object()

Listing 18: Assert that subject is an object

verify($subject)->is()->object();

resource()

Listing 19: Assert that subject is a resource

verify($subject)->is()->resource();

scalar()

Listing 20: Assert that subject is a scalar value

verify($subject)->is()->scalar();

string()

Listing 21: Assert that subject is a string

verify($subject)->is()->string();

3.1.4 Numeric Values

lessThan()

Listing 22: Assert that subject is less than some value

verify($subject)->is()->lessThan($value);

3.1. Value Assertions 11

BeBat/Verify, Release latest

lessOrEqualTo()

Listing 23: Assert that subject is less than or equal to some value

verify($subject)->is()->lessOrEqualTo($value);

greaterThan()

Listing 24: Assert that subject is greater than some value

verify($subject)->is()->greaterThan($value);

greaterOrEqualTo()

Listing 25: Assert that subject is greater than or equal to some value

verify($subject)->is()->greaterOrEqualTo($value);

finite()

Listing 26: Assert that subject is a finite value

verify($subject)->is()->finite();

infinite()

Listing 27: Assert that subject is an infinite value

verify($subject)->is()->infinite();

nan()

Listing 28: Assert that subject is a NaN (or “not a number”) value

verify($subject)->is()->nan();

3.1.5 String Values

contain()

12 Chapter 3. Assertions

BeBat/Verify, Release latest

Listing 29: Assert that subject contains a value

verify($subject)->will()->contain('value');

Note: The behavior of contain() can be changed using the withoutCase() and withoutLinEndings()modifiers.

startWith()

Listing 30: Assert that subject starts with some value

verify($subject)->wil()->startWith('value');

endWith()

Listing 31: Assert that subject ends with some value

verify($subject)->will()->endWith('value');

matchRegExp()

Listing 32: Assert that subject matches a regular expression

verify($subject)->will()->matchRegExp('/myregexp/');

matchFormat()

Listing 33: Assert that subject matches a format pattern

verify($subject)->will()->matchFormat('%i');

See also:

See PHPUnit’s assertStringMatchesFormat() for details on format placeholders.

matchFormatFile()

3.1. Value Assertions 13

https://docs.phpunit.de/en/10.3/assertions.html#appendixes-assertions-assertstringmatchesformat

BeBat/Verify, Release latest

Listing 34: Assert that subject matches a format pattern from a file

verify($subject)->will()->matchFormatFile('/path/to/format.txt');

3.1.6 Array Values

contain()

Listing 35: Assert that subject contains some value

verify($subject)->will()->contain('value');

Note: Unlike PHP and PHPUnit, BeBat/Verify’s contain() performs strict comparison by default for both objects
and internal types. If your test(s) require loose type checking you must use a modifier.

Note: The behavior of contain() can be changed using the withoutType() and withoutIdentity() modifiers.

key()

Listing 36: Assert that subject has a given key

verify($subject)->has()->key('value');

count()

Listing 37: Assert that subject has a certain number of elements

verify($subject)->has()->count(4);

sameSizeAs()

14 Chapter 3. Assertions

BeBat/Verify, Release latest

Listing 38: Assert that subject has the same number of elements as an-
other array or traversable value

verify($subject)->is()->sameSizeAs(['some', 'array']);

containOnly()

Listing 39: Assert that subject only contains values of a given type

verify($subject)->will()->containOnly('string');
verify($subject)->will()->containOnly(SomeClass::class);

Note: The containOnly() assertion works for both internal types and classes.

list()

Listing 40: Assert that subject is a list (all keys are consecutive numbers
starting at 0)

verify($subject)->is()->list();

Attention: The list() assertion requires PHPUnit 10 or later.

3.1.7 Object & Class Properties

attribute()

Listing 41: Assert that subject has some attribute/property

verify($subject)->has()->attribute('attributeName');
verify(MyClass::class)->has()->attribute('attributeName');

Deprecated since version 3.2.0: The attribute() assertion has been replaced by property()

property()

Listing 42: Assert that subject has some property

verify($subject)->has()->property('propertyName');

Deprecated since version 3.2.0: Using the property() assertion with a class string as the subject has been deprecated.
Assertions with object instances as the subject will continue to be supported.

3.1. Value Assertions 15

BeBat/Verify, Release latest

staticAttribute()

Listing 43: Assert that subject has a static attribute/property

verify(MyClass::class)->has()->staticAttribute('attributeName');

Deprecated since version 3.2.0: Making assertions about static attributes has been deprecated.

3.1.8 JSON

json()

Listing 44: Assert that subject is a valid JSON string

verify($subject)->is()->json();

equalToJsonString()

Listing 45: Assert that subject is equal to a JSON string

verify($subject)->is()->equalToJsonString('{"json": "string"}');

equalToJsonFile()

Listing 46: Assert that subject is equal to a JSON value from a file

verify($subject)->is()->equalToJsonFile('/path/to/file.json');

3.2 File Assertions

BeBat/Verify includes assertions specific to filesystem entries. To make assertions about a filesystem entity, pass the
path to verify_file() and then chain your assertion(s) after a conjunction.

3.2.1 State & Type

exist()

16 Chapter 3. Assertions

BeBat/Verify, Release latest

Listing 47: Assert that a path exists in the filesystem

verify_file($path)->does()->exist();

file()

Listing 48: Assert that a path is a regular file

verify_file($path)->is()->file();

directory()

Listing 49: Assert that a path is a directory

verify_file($path)->is()->directory();

link()

Listing 50: Assert that a path is a symbolic link

verify_file($path)->is()->link();

3.2.2 Contents & Equality

equalTo()

Listing 51: Assert that the file’s contents are equal to some string

verify_file($file)->is()->equalTo('value');

Note: The behavior of equalTo() can be changed using the withoutCase() and withoutLinEndings()modifiers.

equalToFile()

Listing 52: Assert that the file’s contents are equal to another file’s

verify_file($file)->is()->equalToFile('/path/to/file.txt');

Note: The behavior of equalToFile() can be changed using the withoutCase() and withoutLineEndings()
modifiers.

3.2. File Assertions 17

BeBat/Verify, Release latest

contain()

Listing 53: Assert that the file’s contents contains some value

verify_file($file)->will()->contain('value');

Note: The behavior of contain() can be changed using the withoutCase() and withoutLinEndings()modifiers.

containFiles()

Listing 54: Assert that a directory contains some files

verify_file($directory)->will()->containFiles(['File1', 'File2']);

linkTarget()

Listing 55: Assert that a symbolic link points to a particular file

verify_file($link)->has()->linkTarget('/some/other/file');

passCallback()

Listing 56: Assert that the file’s contents will pass a callback function

verify_file($file)->will()->passCallback(function($content): bool {
return complexValidationChecks($content);

});

3.2.3 Permissions

readable()

Listing 57: Assert that a file is readable

verify_file($file)->is->readable();

writable()

Listing 58: Assert that a file is writable

verify_file($file)->is()->writable()

18 Chapter 3. Assertions

BeBat/Verify, Release latest

executable()

Listing 59: Assert that a file is executable

verify_file($file)->is()->executable()

permission()

Listing 60: Assert that a file has some permission value

verify_file($file)->has()->permission(0755);
verify_file($file)->has()->permission('644');

Note: The permission() assertion accepts permissions in octal format as either strings or integers.

Note: The behavior of permission() can be changed use the matching() modifier.

3.2.4 Ownership

owner()

Listing 61: Assert that a file is owned by a given user

verify_file($file)->has()->owner(501);
verify_file($file)->has()->owner('username');

Note: The owner() assertion supports both user names and IDs.

group()

3.2. File Assertions 19

BeBat/Verify, Release latest

Listing 62: Assert that a file belongs to a given group

verify_file($file)->has()->group(1001);
verify_file($file)->has()->group('groupname');

Note: The group() assertion supports both group names and IDs.

3.2.5 JSON

json()

Listing 63: Assert that the contents of a file are valid JSON

verify_file($file)->is()->json();

equalToJsonString()

Listing 64: Assert that the contents of a file are equal to a given JSON
string

verify_file($file)->is()->equalToJsonString('{"json": "string"');

equalToJsonFile()

Listing 65: Assert that the contents of a file are equal to a different JSON
file

verify_file($file)->is()->equalToJsonFile('/path/to/file.json');

20 Chapter 3. Assertions

CHAPTER

FOUR

ASSERTION MODIFIERS

The behavior of many assertions can be adjusted inline with the test. These modifiers can be used to control case
sensitivity, account for floating point errors, or strictness when checking for object identity and datatypes.

4.1 Included Modifiers

4.1.1 within()

Listing 1: Account for floating point errors

verify(0.1 + 0.2)->within(0.01)->is()->equalTo(0.3);

Supported Assertion

• verify(<float>)

– equalTo()

4.1.2 withoutCase()

21

BeBat/Verify, Release latest

Listing 2: Ignore case when comparing strings

verify('A String')->withoutCase()->is()->equalTo('a string');
verify('A String')->withoutCase()->will()->contain('string');
verify('a string')->withoutCase()->is()->equalToFile('/some/file.txt');

verify_file('/some/file.txt')->withoutCase()->is()->equalTo('a string');
verify_file('/some/file.txt')->withoutCase()->will()->contain('string');
verify_file('/some/file.txt')->withoutCase()->is()->equalToFile('/some/other/file.txt');

Supported Assertions

• verify(<string>)

– equalTo()

– contain()

– equalToFile()

• verify_file()

– equalTo()

– contain()

– equalToFile()

4.1.3 withoutLineEndings()

22 Chapter 4. Assertion Modifiers

BeBat/Verify, Release latest

Listing 3: Ignore line ending format when comparing strings

verify("a\nstring")->withoutLineEndings()->is()->equalTo("a\r\nstring");
verify("another\nstring")->withoutLineEndings()->will()->contain("other\r\nstring");
verify("a\r\nstring")->withoutLineEndings()->is()->equalToFile('/some/file.txt');

verify_file('/some/file.txt')->withoutLineEndings()->is()->equalTo("a\r\nstring")
verify_file('/some/file.txt')->withoutLineEndings()->will()->contain("other\r\nstring")
verify_file('/some/file.txt')->withoutLineEndings()->is()->equalToFile('/some/other/file.
→˓txt')

Attention: The withoutLineEndings() modifier requires PHPUnit 10 or later.

Supported Assertions

• verify(<string>)

– equalTo()

– contain()

– equalToFile()

• verify_file()

– equalTo()

– contain()

– equalToFile()

4.1.4 withoutOrder()

4.1. Included Modifiers 23

BeBat/Verify, Release latest

Listing 4: Ignore element ordering when comparing arrays

verify([1, 2, 3])->withoutOrder()->is()->equalTo([3, 1, 2]);

Supported Assertion

• verify(<array>)

– equalTo()

4.1.5 withoutIdentity()

Listing 5: Ignore object identity when comparing values

verify([$objectA])->withoutIdentity()->does()->contain($objectB);

Supported Assertion

• verify(<array>)

– contain()

4.1.6 withoutType()

Listing 6: Ignore data type when comparing values

verify(['1', '2'])->withoutType()->will()->contain(1);

Supported Assertion

• verify(<array>)

– contain()

4.1.7 matching()

24 Chapter 4. Assertion Modifiers

BeBat/Verify, Release latest

Listing 7: Match a minimum set of permissions, rather than an exact value

verify_file('/some/file/to/test.sh')->has()->matching()->permissions(0711);

Supported Assertion

• verify_file()

– permission()

4.2 Chaining Modifiers

Modifiers can be chained inline with an assertion, so any assertion that supports both withoutCase() and
withoutLineEndings() will support applying both modifiers simultaneously.

verify("A\n\rString")->withoutCase()->withoutLineEndings()
->is()->equalTo("a\nstring");

BeBat/Verify resets its internal state after each assertion, so if you are chaining modifiers along with multiple assertions,
you must reapply the modifier each time.

verify(['1', '2', '3'])->will()->withoutType()->contain(1)
->and()->withoutType()->contain(2);

4.2. Chaining Modifiers 25

BeBat/Verify, Release latest

26 Chapter 4. Assertion Modifiers

CHAPTER

FIVE

CHAINING

Multiple conjunctions and assertions can be chained together, allowing developers to write multiple assertions about
one subject very easily. For example:

verify($value)->is()->internalType('array')
->and()->has()->key('my_index')
->and()->will()->contain('my value');

The above performs three separate assertions against $value in sequence, without having to redeclare our subject, and
does so in a concise, easy to read syntax.

You can switch between positive and negative assertions on the fly; the condition will apply to whatever assertions
follow it. For example:

verify($value)->will()->contain('value 1')
->and()->contain('value 2')
->and()->doesNot()->contain('value c')
->and()->doesNot()->contain('value d');

The above snippet will assert that $value contains 'value 1' and 'value 2', and does not contain 'value c' or
'value d'. It is worth noting that BeBat/Verify requires just a single positive or negative conjunction; any additional
conjunction that does not change the assertion condition is optional. So the previous example could be simplified to:

verify($value)->will()->contain('value 1')->contain('value 2')
->doesNot()->contain('value c')->contain('value d');

Additional conjunctions are only required if you are changing to a positive or negative condition for the following
assertion(s), or if you wish to add a descriptive message to the assertion:

verify($starsArray, 'Famous People')->will('have a Beatle')->contain('Ringo')
->will('have a cartoon')->contain('Bugs Bunny')
->willNot('have a pirate')->contain('Stede Bonnet');

27

BeBat/Verify, Release latest

28 Chapter 5. Chaining

CHAPTER

SIX

PROPERTY ASSERTIONS

BeBat/Verify has the ability to test the value of object and class properties, even those that are protected or private.
While writing assertions about a subject’s internal state is not generally good practice, there are times when inspecting
a protected value may be the simplest way of checking your code. The property you wish to check can be tacked on
after calling verify(), just like if you were accessing it as a public value.

For example, if you had an object called $user with a first_name property that should be equal to 'Alice', you can
assert that with the following code:

verify($user)->first_name->is()->equalTo('Alice');

A similar assertion about a class’s static properties might look like the following:

verify(Model::class)->dbc->is()->resource();

If you would rather explicitly identify your property, you can do so with the propertyNamed() method:

verify($obj)->propertyNamed('fooBar')->is()->false();

All of BeBat/Verify’s assertions should be compatible with reading object or class properties. In addition, properties
fully support chaining and assertion modifiers. The only exception is that once your chain contains an attribute, you can
no longer add assertions about their containing object. Put another way, always write your assertions about an object
first before writing any about its properties. For example:

verify($model)->isNot()->null()
->and()->is()->instanceOf(MyModelClass::class)
->and()->first_name->withoutCase()->is()->equalTo('sally')
->and()->last_name->withoutCase()->doesNot()->contain('smith')
->and()->gpa->within(0.01)->is()->equalTo(4.0);

29

BeBat/Verify, Release latest

30 Chapter 6. Property Assertions

CHAPTER

SEVEN

METHOD ASSERTIONS

Just like with properties, assertions can be made about an object’s methods by adding the method call after verify().
You can write assertions about either a method’s return value or an exception that the method throws.

7.1 Return Values

A simple example might look like:

verify($calculator)->add(2, 3)->will()->returnValue()->identicalTo(5);

In returnValue(), BeBat/Verify will call add() on the $calculator object, passing it 2 and 3, and then cache its
result internally. This means you can write multiple assertions about the return value, just like other verifiers, without
the method needing to be called again.

If your method name conflicts with part of the verifier API, you can use method() and with() to explicitly set a
method name and arguments:

verify(new ArrayObject([]))
->method('empty')->will()->returnValue()->true()
->method('count')->will()->returnValue()->identicalTo(0);

The with() method can also be used to set up multiple example arguments for a single method:

verify($calculator)->add()
->with(1, $someValue)->will()->returnValue()->greaterThan($someValue)
->with(0, $someValue)->will()->returnValue()->identicalTo($someValue)
->with(-1, $someValue)->will()->returnValue()->lessThan($someValue);

7.2 Exceptions

If you need to test an exception thrown by your method, you may do so with throwException() like so:

verify($calculator)->divide($someValue, 0)
->will()->throwException()->instanceOf(DivideByZeroException::class);

Just like with returnValue(), throwException() will call your method and then capture any exceptions it
throws so that you can write assertion about the exception object. If your method does not throw an exception,
throwException() will fail the test for you.

To inspect the exception further, you can drill into it by using the withMessage() and withCode() methods:

31

BeBat/Verify, Release latest

verify($calculator)->add(1, 'two')
->will()->throwException()->instanceOf(InvalidArgumentException::class)
->withMessage()->startWith('Invalid argument passed')
->withCode()->identicalTo(2);

7.3 Invokable Objects

If your subject is an object with an __invoke() magic method, you can write assertions about its return value or
exceptions just like with other methods. Simply use returnValue() or throwException() after passing your subject
to verify() and BeBat/Verify will invoke your object itself:

verify($subject)->will()->returnValue()->identicalTo('return value of __invoke()');

You can supply parameters for your subject using with() just like other methods:

verify($subject)
->with('invalid parameter')->will()

->throwException()->instanceOf(InvalidArgumentException::class)
->with('correct parameter')->will()

->returnValue()->identicalTo('correct parameter value');

32 Chapter 7. Method Assertions

CHAPTER

EIGHT

EXTENDING

BeBat/Verify includes almost all the assertions built into PHPUnit, and all the ones from bebat/filesystem-assertions,
but there may be additional assertions you need in your project. Depending on the number and complexity of assertions
you want to add, BeBat/Verify includes two ways for you to extend it and add your own assertions.

8.1 Custom Constraint

Constraints are the building blocks for both PHPUnit and BeBat/Verify’s assertions. It is possible to write your own
constraints by extending PHPUnit’s Constraint class.

To assert a constraint, pass it to BeBat/Verify’s constraint()method after a conjunction, just like any other assertion.
For example, if you had the package coduo/php-matcher installed:

use Coduo\PHPMatcher\PHPUnit\PHPMatcherConstraint;

use function BeBat\Verify\verify;

verify('{"name": "Norbert"}')->has()
->constraint(new PHPMatcherConstraint('{"name": "@string@"}'));

8.2 Custom Verifier

Using a custom constraint works well if your assertion is a one off and relatively simple. For anything more complicated
though you should create your own verifier class. A verifier extends BeBat\Verify\API\Base and includes one or
more assertion methods.

To use your verifier in an assertion chain, pass its class name to withVerifier(). BeBat/Verify will instantiate your
verifier and pass it the subject and its name. If the constructor requires any additional arguments they can be passed to
withVerifier().

The withVerifier() method can also be used to switch between the value and file verifiers. For example, suppose
you were testing a method that created a file and returned its path. If you wanted to write assertions about both the file
contents and its name, you could do so by switching between verifiers with the withVerifier() method:

use BeBat\Verify\API\File;

// ...

(continues on next page)

33

https://packagist.org/packages/bebat/filesystem-assertions
https://github.com/sebastianbergmann/phpunit/blob/9.5.25/src/Framework/Constraint/Constraint.php
https://packagist.org/packages/coduo/php-matcher

BeBat/Verify, Release latest

(continued from previous page)

verify($subject->writeFile())->will()->endWith('.log') // assertion about the file␣
→˓path

->withVerifier(File::class)->contain('My Log Message'); // assertion about the file␣
→˓contents

For more details about writing your own verifier, see its API documentation.

34 Chapter 8. Extending

CHAPTER

NINE

VERIFIER API

You can add functionality to BeBat/Verify by creating a custom assertion class, or “verifier”. Your verifier can then be
swapped in using the withVerifier()method. All verifiers must extend BeBat\Verify\API\Base, which provides
common functionality for assertion methods. This page describes the public and protected methods built into BeBat\
Verify\API\Base that are most relevant to creating a verifier, although it is not a complete list of every method that
class includes.

class BeBat\Verify\API\Base

assert()

Returns BeBat\Verify\API\Assert (extends PHPUnit\Framework\Assert)

Get an instance of PHPUnit’s Assert class. This class exposes much of PHPUnit’s functionality for writing
tests & assertions, such as causing a test to fail if an error occurs.

constraintFactory()

Returns BeBat\Verify\Constraint\Factory

The constraint factory is used to create constraints in BeBat/Verify. It includes most of the constraints from
PHPUnit as well as those from bebat/filesystem-assertions.

setAssert($assert)

Parameters

• $assert (PHPUnit\Framework\Assert) – An instance of PHPUnit’s assertion object

Returns void

Inject an instance of PHPUnit\Framework\Assert. Useful for unit testing your verifier.

setConstraintFactory($factory)

Parameters

• $factory (BeBat\Verify\Constraint\Factory) – An instance of the BeBat/Verify
constraint factory

Returns void

Inject an instance of BeBat\Verify\Constraint\Factory. Useful for unit testing your verifier.

constraint($constraint)

Parameters

• $constraint (PHPUnit\Framework\Constraint\Constraint) – Constraint to be ap-
plied

35

https://github.com/sebastianbergmann/phpunit/blob/9.5.25/src/Framework/Assert.php
https://packagist.org/packages/bebat/filesystem-assertions

BeBat/Verify, Release latest

Returns static

Apply a constraint to your verifier’s subject. This is the simplest way to perform an assertion in your verifier.

performAssertion($constraint, $value)

Parameters

• $constraint (PHPUnit\Framework\Constraint\Constraint) – Constraint to be ap-
plied

• $value (mixed) – Value the constraint should apply to

Returns static

Apply a constraint to a passed value. This method provides a bit more flexibility over BeBat\Verify\
API\Base::constraint if there is some resolution required to determine the actual value a constraint
should apply to.

performEqualToAssertion($actual, $expected)

Parameters

• $actual (mixed) – The actual value under test

• $expected (mixed) – Value $actual is expected to equal to

Returns static

Apply an EqualTo() constraint on $actual with $expected. This method will take into account the
various modifiers that apply to EqualTo(), including both withoutCase() and withoutLineEndings()
simultaneously.

assertConstraint(constraint, $value)

Parameters

• $constraint (PHPUnit\Framework\Constraint\Constraint) – Constraint to be ap-
plied

• $value (mixed) – Value the constraint should apply to

Returns void

Perform a simple assertion with $constraint and $value. This method is useful for interim assertions
about some value before your primary constraint (for example, asserting that a file exists before reading it
and doing assertions about its contents). The assertConstraint() method does not take into considera-
tion any modifiers or whether the current condition is positive or negative, it just applies $constraint to
$value.

getActualValue()

Returns mixed

Resolve the actual value of the subject. You may override this method in your verifier if there is some
additional logic to resolving your subject’s value, such as reading the result from an object property or
function call.

resetParams()

Returns void

Reset the modifiers to their default state and clear the description. This method will be called after per-
forming an assertion. If your verifier includes custom modifiers you should override this method to set their
value back to default, and call parent::resentParams().

36 Chapter 9. Verifier API

BeBat/Verify, Release latest

9.1 Fluent Design

Your verifier should use a fluent interface, meaning all publicly available methods should return self. For your as-
sertion methods, the easiest way to do this is to return a call to BeBat\Verify\API\Base::constraint with your
assertion’s constraint. If you need more flexibility with resolving your subject’s value (such as reading it from a file)
you may return BeBat\Verify\API\Base::performAssertion instead. Lastly, if your assertion is that two values
are equal, you can us the BeBat\Verify\API\Base::performEqualToAssertion to simplify handling the various
modifiers and edge cases that constraint supports. All three of these methods will also handle negative assertions for
you, as well as resetting the classes internal state for the next assertion.

9.1. Fluent Design 37

https://en.wikipedia.org/wiki/Fluent_interface

BeBat/Verify, Release latest

38 Chapter 9. Verifier API

PHP NAMESPACE INDEX

b
BeBat\Verify\API, 35

39

BeBat/Verify, Release latest

40 PHP Namespace Index

INDEX

A
assert() (BeBat\Verify\API\Base method), 35
assertConstraint() (BeBat\Verify\API\Base method),

36

B
Base (class in BeBat\Verify\API), 35
BeBat\Verify\API (namespace), 35

C
constraint() (BeBat\Verify\API\Base method), 35
constraintFactory() (BeBat\Verify\API\Base

method), 35

G
getActualValue() (BeBat\Verify\API\Base method), 36

P
performAssertion() (BeBat\Verify\API\Base method),

36
performEqualToAssertion() (BeBat\Verify\API\Base

method), 36

R
resetParams() (BeBat\Verify\API\Base method), 36

S
setAssert() (BeBat\Verify\API\Base method), 35
setConstraintFactory() (BeBat\Verify\API\Base

method), 35

41

	Getting Started
	Installation
	Compatibility

	Basic Usage
	Alternate Functions

	Conjunctions
	Descriptions
	Custom Conjunctions

	Assertions
	Value Assertions
	Equality
	identicalTo()
	equalTo()
	equalToFile()

	Truthiness
	true()
	false()
	null()
	empty()
	passCallback()

	Type
	instanceOf()
	array()
	bool()
	callable()
	closed()
	float()
	int()
	iterable()
	numeric()
	object()
	resource()
	scalar()
	string()

	Numeric Values
	lessThan()
	lessOrEqualTo()
	greaterThan()
	greaterOrEqualTo()
	finite()
	infinite()
	nan()

	String Values
	contain()
	startWith()
	endWith()
	matchRegExp()
	matchFormat()
	matchFormatFile()

	Array Values
	contain()
	key()
	count()
	sameSizeAs()
	containOnly()
	list()

	Object & Class Properties
	attribute()
	property()
	staticAttribute()

	JSON
	json()
	equalToJsonString()
	equalToJsonFile()

	File Assertions
	State & Type
	exist()
	file()
	directory()
	link()

	Contents & Equality
	equalTo()
	equalToFile()
	contain()
	containFiles()
	linkTarget()
	passCallback()

	Permissions
	readable()
	writable()
	executable()
	permission()

	Ownership
	owner()
	group()

	JSON
	json()
	equalToJsonString()
	equalToJsonFile()

	Assertion Modifiers
	Included Modifiers
	within()
	Supported Assertion

	withoutCase()
	Supported Assertions

	withoutLineEndings()
	Supported Assertions

	withoutOrder()
	Supported Assertion

	withoutIdentity()
	Supported Assertion

	withoutType()
	Supported Assertion

	matching()
	Supported Assertion

	Chaining Modifiers

	Chaining
	Property Assertions
	Method Assertions
	Return Values
	Exceptions
	Invokable Objects

	Extending
	Custom Constraint
	Custom Verifier

	Verifier API
	Fluent Design

	PHP Namespace Index
	Index

